REPORT OF PROF. SUNDAY SUNDAY IKIENSIKIMAMA, THE CHAIR OCCUPANT SHELL-JV ARET ADAM PROFESSORIAL CHAIR IN PETROLEUM ENGINEERING, UNIVERSITY OF PORT HARCOURT, CHOBA, RIVERS STATE, NIGERIA.

ON

THE WORK PLAN AND ACTIVITIES OF THE CHAIR FOR THE YEAR 2022

ТО

STAKEHOLDERS OF THE SHELL-JV ARET ADAMS PROFESSORIAL CHAIR IN PETROLEUM ENGINEERING

EXECUTIVE SUMMARY

This report outlines some of the activities that the Shell Aret Adams professorial Chair occupant in petroleum Engineering participated in from September to December 2021 and beyond. Other notable things are the list of projects under supervision and students under mentorship at the post graduates and undergraduate levels. The different teaching engagements of the chair is also emphasized as well as webinars and meetings attended within and outside the university of Port Harcourt. Other deliverables such as publications are also part of the report. The report also incorporates various research areas and the projects under them along sides the timelines for the various projects under the different research focus. Also of importance are the activities such as quiz competition, technical paper contest and workshop that will bring together students, lecturers and the academia as well as the stakeholders. These activities will aid in equipping students with knowledge of the Oil and Gas Industry in the area of software application, assist students in their academics and also give visibility to the Chair.

REPORT OUTLINE FOR PROFESSORIAL CHAIR WORKPLAN FOR 2022

_			_
D	A	\mathbf{C}	Г
	н	ЧТ	r.

Cover Page			
Executive Summary	i		
Report Outline	ii		
List of Tables and Appendices	iv		
1.0.Introduction	1		
2.0.Mission, Vision and Core Values	1		
3.0.Research Focus for the Chair	1		
4.0.Work Plan and the Activities of The Chair For The Year 2022	2		
4.1. Running of Flow Assurance Laboratory	2		
4.1.1. Partnership For Skills in Applied Sciences, Engineering and Technology			
Regional Scholarship and Innovation Fund (PASET-RSIF) Program attended	3		
4.1.1.1 Webinars/Workshops Attendance	3		
4.1.1.2 Other PASET-RSIF Activities	5		
4.1.2. Chaired Departmental graduate board for Ph.D. and Master Seminars	5		
4.1.3 Other Presentations Chaired and Attended	5		
4.1.4: Lectures held with Different Sets of Students Within University of Port Harcourt	6		
4.1.5. Examination conducted for Students	6		
4.1.6. Courses Taught and handled for Undergraduates, Masters and PG Students	6		
4.1.7. Meetings Attended Within and the University of Port Harcourt	6		
4.1.8. Conference Attendance	7		
4.1.9. Mentorship & Supervision of Undergrduate & Post graduate Students	7		
4.2. Activities of the Chair in 2022 and beyond.	10		

	4.2.1. Developing database for green hydrate inhibitors	11
	4.2.2. Incorporating holistic flow assurance research	11
4.2.3.	Revamping the drilling/cementing laboratory	12
4.2.4.	Conference Attendance	13
4.2.5.	Mentorship and supervision of post graduate and undergraduate students	13
4.2.6.	Attendance of short courses	14
4.2.7.	Stake Holders Meeting	14
4.2.8.	Courses Taught to Undergraduates and Post graduate Students	14
4.3	Key Performance Indicators (KPIs)	14
4.3.1.	Patents	14
4.3.1.1	Filed	15
4.3.1.2	2 Being Compiled	15
4.3.2	Publications	15
4.3.3	Mentorship	16

LIST OF TABLES AND APPENDICES

Table 1:	Names of External Students and Research Topics	2
Table 2:	Names of Internal Students and Research Topics	3
Table 3:	Research Focus and on-Going Projects under them	7
Table 4:	Research Projects and Time Lines	9
Table 5:	Time line for Developing Database for Green Hydrate Inhibitors	11
Table 6:	List of some Equipment Needed for the Flow Assurance Laboratory	11
Table 7:	List of laboratory Equipment for Drilling Fluids/Cementing Laboratory	12
Table 8:	List of some Graduates Mentored and Titles of Supervised Research	16
Table 9:	List of Masters and Ph.D. Students about to Graduate	17
Appendix 1	List of Some Masters and Ph. D Students under Mentorship/Titles of	
	Supervised Research Projects (On-Going)	20
Appendix 2	List of Some Masters and Ph. D Students under Mentorship/Titles of Supervised	
	Research Projects (Just Assigned)	24
Appendix 3	List of Some Undergraduate Students under Mentorship/Titles of Supervised	
	Research Projects (Just Assigned)	26

1.0 INTRODUCTION

The Chair since its inauguration has been able to run smoothly after the initial hassles. The chair submitted its initial workplan for 2021 last year August 2021. The Chair has contributed to human capacity development and mentorship in the Department of Petroleum and Gas Engineering through energy driven and innovative research in University of Port Harcourt and will continue to do so. The Chair also looks forward to assisting good students and also collaborate with other research on quality research as well as engage in quality research as a way to moving the Chair forward.

2.0. MISSION, VISION AND CORE VALUES

. The chair has its mission, vision and core values.

MISSION: To meet the Research & Development (R & D) needs of the Oil and Gas Industry

VISION: Harnessing Available Human Capital Potentials through Quality Research, Innovation and Collaboration

CORE VALUES: DICT (Pillars for the Vision and Mission)

Diligence, Integrity, Commitment and Teamwork

3.0. RESEARCH FOCUS FOR THE CHAIR

With the Oil and Gas production going offshore, flow assurance issues (hydrates, scales, wax, asphaltenes, corrosion etc.) have become dominant so one of the areas of research focus for the chair will be to handle production and flow assurance issues in oil and gas production and developing database for green inhibitors. Focus will also include big data, artificial intelligence and their application to oil and gas problems, reservoir modelling and simulation studies, gas processing, utilization and monetization, CO₂ sequestration for greener environment for oil and gas production, Petroleum Economics and Risk Management in Petroleum Ventures, Petroleum and Environment as well as Enhanced Oil Recovery (EOR) as well as Pressure, Volume and Temperature (PVT) studies.

4.0. WORK PLAN AND THE ACTIVITIES OF THE CHAIR FOR THE YEAR 2022

The workplan is intended to highlight the Chair's activities for the later part of September 2021 and January -1^{st} week of March, 2022. The activities the Chair will be engaged in going forward are enumerated below. some of the take-off activities of the Chair are enumerated in the following subsections.

4.1. Running of Flow Assurance Laboratory: The flow Assurance laboratory especially for hydrate studies has been in use both by internal and external students. Table 1 and 2 shows list of students that have used the laboratory and their research topics. At present a locally fabricated flow loop (2016/2017) is being used for gas hydrate studies. This was upgraded to include an industrial cooling unit, a nitrogen gas port for flushing and a visual camera (2019/2020). This still needs upscaling to include more inspection cameras, use of transparent pipes, if possible, full automation for ease of data collection as well as a cumulative gas flow meter to measure volume of gas used up as the experiment proceeds.

C/No	Names of Students	Title of Desserveb	Sahaal/Faculty/Department	Data/Duration
S /1NO	Names of Students	The of Research	School/Faculty/Department	Date/Duration
		Work/Project		of Experiment
1	Orisamika Benjamin	Performance	Department of Petroleum	12 th -27 th April
	Oluwaseyi	Evaluation of Selected	Engineering, Faculty of	2021
	Ph. D Student	Bio-chemicals for Gas	Technology, University of	16 days
		Hydrate Inhibition	ibadan, Oyo State, Nigeria	
2	Asikoko Freedom	The Use of Cassava	Department of Petroleum	18 th -20 th October,
	Masters Student	Leaf Extract as Gas	and Gas Engineering	2021
		Hydrate Inhibitor	Faculty of Engineering,	3 Days
			Federal University of	
			Petroleum Resources	
			(FUPRE)	
			Effurun, Delta State, Nigeria	
3	Ndoma-Egba Stanley	Laboratory Evaluation	Department of Petroleum	21 st - 23 rd October
	Masters Student	of Moringa Oleifera as	and Gas Engineering	2021
		Natural Gas Hydrate	Faculty of Engineering.	3 days
		Inhibitor using a	Federal University of	
		Hydrate Flow Loop	Petroleum Resources	
		James James P	(FUPRE)	
			Effurun, Delta State, Nigeria	

Table 1: Names of External students and Research Topics

S/No	Names of Students	Title of Research Work/Project	School	Date/Duration of
				Experiment
1	Odatuwa Toju	Experimental Investigation of Local	Department of	10 th -17 th June
	Masters Student	Hydrate Inhibitor	Petroleum and	2021
			Gas Engineering,	7 days
			Faculty of	
			Engineering,	
			University of Port	
			Harcourt, Rivers	
			State, Nigeria	
2	Madueke Stanley	Enhancing Hydrate Inhibition using	Department of	$19^{\text{th}}-24^{\text{th}}$ July,
	Masters Student	Deep Eutectic Solvent and	Petroleum and	2021
		Synergistic Compound	Gas Engineering,	6 Days
			Faculty of	
			Engineering,	
			University of Port	
			Harcourt, Rivers	
			State, Nigeria	
3	Isaiah Samuel	Effect of Corrosion Inhibitors on Ga	Department of	21 st -26 th June
	Masters Students	Hydrate Formation	Petroleum and	2021
			Gas Engineering,	6 days
			Faculty of	
			Engineering,	
			University of Port	
			Harcourt, Rivers	
			State, Nigeria	

 Table 2: Names of Internal Students and Research Topics

4.1.1. Partnership For Skills in Applied Sciences, Engineering and Technology Regional Scholarship and Innovation Fund (PASET-RSIF) Programs Attended

As part of the responsibility of the Chair to the department as stated in the deed which is to assist the Department by promoting and advancing her both in academics, research and development, the Chair also assists the Department to coordinate and manage regional and international student of Petroleum Engineering background sent to us by ICIPE (the regional coordinating unit for PASET) through a Grant Award as African host University (AHU)

4.1.1.1. Webinars/Workshops Attendance

participation in the PASET-RSIF Capacity Building Activities, August 2021- 12th RSIF Student Seminar Series Webinar held on 4th August, 2021.

participation in the PASET-RSIF Capacity Building Activities, August 2021- Guest Webinar held on 25th August, 2021.

participation in the PASET-RSIF Training Workshop: Information Literacy and Reference Management held on Wednesday 18th - Friday 20th August, 2021.

participation in the PASET-RSIF Capacity Building Activities, August 2021- 13th RSIF Student Seminar Series Webinar held on 1st September, 2021.

participation in the PASET-RSIF Capacity Building Activities, September 2021-RSIF International Partner Institution, IPI Presentation for scholars held on 17th September, 2021.

participation in the PASET-RSIF Capacity Building Activities, September 2021-Monitoring and Evaluation Training Workshop for scholars held on 23rd-24th September, 2021.

participation in the PASET-RSIF Capacity Building Activities, September 2021- 16th RSIF Guest Webinar series held on 29th September, 2021.

participation in the PASET-RSIF Capacity Building Activities, October 2021- 14th RSIF Student Seminar Series Webinar held on 6th October, 2021.

participation in the PASET-RSIF Venture Capital Funding Opportunities in Africa held on 3rd November, 2021.

participation in the PASET-RSIF International Partners Institutions (IPIs) and African Host Universities (AHUs) held on Monday 15th November, 2021.

participation in the PASET-RSIF Pre-Conference on Building Capacity for Science, Technology and Innovation (STI) in Africa held on Monday 15th November, 2021.

participation in the PASET-RSIF Pre-Conference, Online held on 16-17th November, 2021.

for participation in the PASET-RSIF Info Webinar-Grant Writing-Erasmus+ 2022 Capacity Building in Higher Education held on the 8th of December, 2021.

participation in the PASET-RSIF Capacity Building Activities, January 2022- 20th RSIF Guest Webinar held on 28th January, 2022.

participation in the PASET-RSIF Capacity Building Activities, February 2022- 18th RSIF Student Seminar Series held on 2nd February, 2022.

4.1.1.2. OTHER PASET-RSIF ACTIVITIES

participation in the PASET-RSIF Cohort IV Students Admission Selection process held on the 15th December, 2021

participation in the PASET-RSIF: IEC Meeting for Cohort 4 application reviews webinar held 25th January, 2022.

4.1.2. Chaired Departmental graduate board for Ph.D. and Master seminars as follows:

- November 2nd 2021, Post graduate students presentation at the department conference room by 10:00am
- December 3rd 2021, Post graduate students proposal presentation at the department conference room by 10:00am
- December 21st 2021, Post graduate students presentation interview at the department conference room by 10:00am

4.1.3. Other Presentations Chaired and Attended

- 27th October 2021: Pre-proposal presentation for Gap analysis/Literature for PASET Ph.D. Scholar-Mr. Itai Matadza
- 3rd November 2021: Pre-proposal presentation for Gap analysis/Literature for PASET Ph.D. Scholar-Mrs. Fawziyah Olarinoye
- 9th November 2021:2nd Pre-proposal presentation for Gap analysis/Literature for PASET Ph.D. Scholar- Mrs. Fawziyah Olarinoye
- 23rd November 2021: 3rd Pre-proposal presentation for Gap analysis/Literature for PASET Ph.D. Scholar- Mrs. Fawziyah Olarinoye
- 26th November 2021 webinar on Energy Generation (Renewable & Non-Renewable Use and Environmental Impact (Carbon Capture research) on how to access funding from Gas Flare Research Funding (GCFR) body with Prof. Chike Oduoza from University of Wolvahursten, UK
- 10th December 2021: Field Development Plan (FDP) seminar for PGD students at Institute of Petroleum Studies (IPS), University of Port Harcourt.
- 12th December 2021: Field Development Plan (FDP) seminar for Masters students at Institute of Petroleum Studies (IPS), University of Port Harcourt.
- 22nd February 2022: Proposal presentations for PASET Ph. D. Scholars Mr. Itai Matadza, Mrs. Fawziyah Olarinoye and Gap Analysis presentation for Mr. Humphrey Harry. Proposal defense for two Masters Students Mr. Otega Solomon Ogenerhwo and Babawale Ojedapo
- 23rd February 2022: Gap Analysis presentation for PASET Ph.D. scholars Mr. Okon Efiong Okon and Mrs. Tosin Samuel-Idara

4.1.4: Lectures held with Different Sets of Students Within University of Port Harcourt

- ✓ Lectures with PGD students on Petroleum Economics at Institute of Petroleum Studies (IPS) held on 27th September- 1st October 2021
- ✓ Lectures with Ph.D. students on Risk Analysis at World Bank Africa Centre of Excellence, Centre for Oilfield Chemicals Research (ACE-CEFOR) on 9th December 2021

4.1.5. Examination conducted for Students

 Online external examination for students from University of Mines and Technology, Tarkwa, Ghana on 30th September 2021

4.1.6. Courses Taught and handled for Undergraduates, Masters and PG Students

- PNG 302.1 Rock and Fluid Properties
- ENG 402.1 Engineering Economics
- PNG 403.1 Natural Gas Engineering
- GNG 505.1 Petrochemical processes
- PNG 307.2 Fundamentals of Petroleum Engineering
- GES 400.2 Entrepreneurship
- ENG 400.2 Industrial Training II
- PNG 507.2 Petroleum Economics and Property Evaluation
- PNG 508.2 Natural Gas Processing
- PNG 520.2 Final Year Project
- PNG 802.1 Advanced Natural Gas Engineering
- PNG 805.1 Advanced Evaluation of Oil and Gas Properties
- o PNG 811.2 Risk Analysis in Petroleum Ventures
- o PNG 812.2 Liquified Natural Gas (LNG) Processing
- DPE 780.2 Petroleum Economics and Property Evaluation

4.1.7. Meetings Attended Within the University of Port Harcourt

- Senate Committee on Academic Policies and Programs (SCAPP) Meetings in the University.
 - ✓ November 17th 2021

4.1.8. Conference Attendance

 Attendance of International Association of Research Scholars & Administrators (IARSA)-SPDEG 2021 Conference held on the 10th -11th November 2021 at the Emerald Energy Institute (EEI), University of Port Harcourt.

4.1.9. Mentorship and Supervision of Undergraduate and Post Graduate Students.

As part of supporting the department in the area of human capacity development and mentorship, the Chair took up more mentees and project supervision. Some of these projects and area of research focus and time lines are shown in Tables 3 and 4. List of some postgraduate students working on the various research areas and project titles are shown in Appendix. Students just assigned for supervision can be found in Appendix 2 and 3.

S/No.	Research Area/Focus	Project Titles
1	Flow Assurance Issues	A Comparative Analysis between Annular
		Friction Model.
		Economic Analysis of Artificial Lift System using Gas Lift and Electric Submersible Pump
		Geo-mechanical Method for Sand Production Management using Kirsh Model in Oil and Gas Well
		Comparative Analysis of different Artificial Lift Methods using Simply Arithmetic Weighing (SAW) Model
		Assessment of Gravel Packing Methods used in the
		Petroleum Industry.
2	Big Data, Artificial Intelligence and its Application to Oil and Gas	Forecasting of Petroleum Production using Data Driven method (Machine Learning)
		Application of Artificial Intelligence in the Economic Analysis of Petroleum Ventures
3	Reservoir Modelling and Simulation Studies	Application of Geo-mechanical Properties to Reservoir Evaluation
		Integrated Approach for Source Rocks Characterization of Niger Delta Basin, Nigeria

Table 3: Research Focus and on-Going Projects

		Saismia Based Artificial Intelligence and Simulation for
		Seismic Based Artificial Intelligence and Simulation for
		improved Reservoir Description in a Niger Delta Field
		Development of a Fingerprint Model to Classify Niger Delta Reservoirs Using OPEC's Auditing Criteria
		Permeability Modelling Using Core and Well Log Data in the 'XX Field' of Coastal Swamp Depo-bed in the Niger Delta Basin
4	Gas Processing, Utilization and Monetization	Development of Efficient Infrastructure and Interconnecting Network for Gas Pipelines.
		Reduction of Transmission and Distribution Losses through Efficient Leak Detection and Monitoring (Case Study: Obite-Bonny Gas Pipeline Network)
		Evaluation of Development and Economic Options for Stranded Gas
		Gas Conversion and Utilization Strategies for Economic and Environmental Benefits
5	Petroleum Economics and Risk Ventures	Metaheuristic Intelligent Systems for Ranking International Fiscal Regimes
		A Stochastic Approach to Cost Estimation and Economic Evaluation of Oil Well in the Niger Delta
		Techno-Economic Analysis of Floating Gas to Power (FGTP) for Stranded Gas -Offshore Nigeria
		Economic Impact of Policies and Infrastructures on Gas Utilization Systems in Nigeria.
		The Economics of Floating Gas to Liquid Technology
		Economic Analysis of Gas to Power in Nigeria
		Impact of Transition to renewable energy on Nigeria's Economic Growth

6	Petroleum and Environment	Production of Biofuels from Lignocellulosic Biomass	
		Resources	
7	Enhanced Oil Recovery	Evaluation of Surfactant to Improve Sweep Efficiency of an	
		Onneid in Niger Delta	
		A New Approach of Controlling the Activities of Sulphate - Reducing Bacteria (SRB) in the Reservoir During Water Injection.	
		Applicability of Polymer Flooding for in-situ Development of Nigeria's Heavy Oil Reservoirs	
		Polymer Flooding for Enhanced Oil Recovery	

Table 4: Research Projects and Time Lines

0.01		
S/No.	Project Titles	Time Lines
1	Geo-mechanical Method for Sand Production Management using Kirsh	3-6 months
	Model in Oil and Gas Well.	
	Comparative Analysis of different Artificial Lift Methods using Simply	
	A site matice Weighting (CAW) Model	
	Anumeuc weigning (SAW) Model.	
	The Economics of Floating Gas to Liquid Technology.	
	Economic Analysis of Gas to Power in Nigeria	
	Impact of Transition to renewable energy on Nigeria's Economic	
	Crowth	
	Growth.	
	Assessment of Gravel Packing Methods used in the Petroleum Industry.	
	Evaluation of Surfactant to Improve Sweep Efficiency of an Oilfield in	
	Niger Delta	
2	Forecasting of Petroleum Production using Data Driven method	8 months
2	(Mashing Learning)	0 111011115
	(Machine Learning)	
	Integrated Approach for Source Rocks Characterization of Niger Delta	
	Basin, Nigeria.	
	Techno-Economic Analysis of Floating Gas to Power (FGTP) for	
	Strended Cos. Officients Nieseis	
	Stranded Gas -Offshore Nigeria	

3	Application of Geo-mechanical Properties to Reservoir Evaluation	1 -1.5years
	Reduction of Transmission and Distribution Losses through Efficient Leak Detection and Monitoring (Case Study: Obite-Bonny Gas Pipeline Network)	
	Applicability of Polymer Flooding for in-situ Development of Nigeria's Heavy Oil Reservoirs	
	Application of Artificial Intelligence in the Economic Analysis of Petroleum Ventures	
	Gas Conversion and Utilization Strategies for Economic and Environmental Benefits	
	Seismic Based Artificial Intelligence and Simulation for improved Reservoir Description in a Niger Delta Field	
	Economic Impact of Policies and Infrastructures on Gas Utilization Systems in Nigeria.	
	Permeability Modelling Using Core and Well Log Data in the 'XX Field' of Coastal Swamp Depo-bed in the Niger Delta Basin.	
	Metaheuristic Intelligent Systems for Ranking International Fiscal Regimes	
4	A Stochastic Approach to Cost Estimation and Economic Evaluation of Oil Well in the Niger Delta.	2 years
	Development of a Fingerprint Model to Classify Niger Delta Reservoirs Using OPEC's Auditing Criteria	
5	Production of Biofuels from Lignocellulosic Biomass Resources.	3 years
	Evaluation of Development and Economic Options for Stranded Gas	

4.2. ACTIVITIES OF THE CHAIR IN 2022 AND BEYOND

Going forward the Chair has had approval from the Chairman of Board of Trustees who is also the Vice Chancellor of the university to carry out some activities such as:

- 1. Workshop on pertinent industry software
- 2. Students quiz competition
- 3. Students paper contests.

These programmes have its objectives as

- i. Enhance petroleum Engineering education in the University and beyond
- ii. Enhance the visibility of the Chair
- iii. Assist and encourage students in their academics

Plans are on-going and has been put in place for the take-off of these activities.

4.2.1. Development of database for green hydrate inhibitors

This will be done by carrying out experimental runs on some naturally sourced plant materials around to see their effect on gas hydrate formation. This database will help in model and software development in the area of flow assurance. **Table 5** shows a timeline for some of the activities under this project.

S/No.	Activities	Time Frame
1	Local sourcing of raw materials	3 Months
2	Preparation of raw materials	1 Month
3	Experimental runs to ascertain effectiveness of	2 Months
	raw materials	
4	Experimental runs for Comparison with	2months
	commercial inhibitors	
5	Experimental runs for blends of raw materials	2 Months
6	Experimental runs of blends for validation with	2 months
	commercial inhibitors	
7	Cost Benefit Analysis	2 Months
8	Collation of results	1 Month
9	Result Analysis	1.5 Months
10	Report Writing	1.5 Months

 Table 5: Time line for Developing Database for Green Hydrate Inhibitors

4.2.2. Incorporating Holistic Flow Assurance Research (scales, wax, asphaltenes, corrosion, fluid pumpability, components etc.). At present research focus is on gas hydrate as mentioned in section 4.1. The flow assurance lab is being revamped to bring it up to standard. Some equipment needed as a way forward are shown in **Table 6**

 Table 6: List of some Equipment Needed for the Flow Assurance Laboratory

S/No.	Flow Assurance Problem	Equipment Required		
1	Asphaltenes	• Isothermal depressurization equipment for depressurization experiments		
		Organic solid filters (OSD)		
		Reservoir Fluid Particle Analyzer (RFP)		
		High Pressure Flocculation Trimeter		
		• Asphaltene deposition Inhibitor tester (ADIT)		
		• Solid Deposition Flow Loop (SDL)		
		Automated Asphaltene Extractor		

		 Titration equipment for titration experiments Particle size distribution and solid onset determination apparatus Near Infrared Red detection systems for accurate onset determination
2	Waxes or blended water composition	 Cross polar microscopy (CPM) or Differential Scanning Calorimeter (DSC) for stock tank determination of wax appearance temperature (WAT) and wax dissolution temperature. Near-Infrared Red (NIR) or PFI equipment for live fluid WAT High Temperature Gas Chromatography (HTGC) for identification of paraffin distribution in reservoir fluid
3	Hydrates	 Hydrates mini flow loops (vertical and inclined) with visual display unit fully automated for ease of data collection to see the effects of elevation on rate of hydrate formation. Visual synthetic sapphires loops Rocking Cells Autoclaves Hydraeval systems Fluid Eval for HP-HT Visual studies
4.	Scales	 Geochemical software for predicting thermodynamic onset conditions based on water chemistry Dynamic scale loops Visual Scale testers
5	Fluid Pumpability	 Friction Flow Loop for evaluating Drag Reducing Agents (DRA loop)
6	Components	Flow through SDS CellsFlow Stand Stirred Pressure Vessel

4.2.3. Revamping the Drilling/Cementing Laboratory: This is very critical as this will help open up and accelerate the research in drilling, drilling fluids and cementing. Some equipment needed for this set up are shown in **Table 7**

S/No.	TEST TYPE	EQUIPMENT REQUIRED
1	Fluid /Mud Density	Mud Balance
2	Mud Viscosity	Fann V-G Meter
3	Hydrogen ion Concentration (P ^H)	Hydrion P ^H Dispenser/ P ^H Meter
4	Mud Rheology Test	Variable Speed Rheometer
5	Gel Strength	Rheometer

 Table 7: List of laboratory Equipment for Drilling Fluids/Cementing Laboratory

6 7	Filtration, all Building and Resistivity Solid/Liquid Content and Emulsion Characteristics	 Low- and high-pressure standard Filter Press Vernier Caliper Resistivity Meter Sand content set Fann Emulsion Electrical stability Tester 		
8	Differential Sticking Test	Differential sticking tester		
9	Reactive solid determination	Methyl Blue		
10	EP/Lubricity tests	Lubricity tester		
11	Aging Test	Aging/roller oven		
12	Calcite build up Test	Calcimeter		
13	Drilling Mud preparation	Blenders/Mixers		
14	Particle Size Analysis	Wet sieve analysis Kit		
	CEMENTING TESTS			
1.	Fineness Test	• Sieve or Blaine Air Permeability tester		
2	Consistency Test	Viscat Apparatus		
3	Cement Setting Time (Initial and Final)	Viscat Apparatus		
4	Soundness Test	Chatelier's Apparatus		
5	Cement Strength Test/Tensile	Compressive strength Tester		
	strength	• Cement- Mortar Briquette in a tensile testing machine		
6	Heat of Hydration	Calorimeter		
7	Cement Weight	Mud Balance		
8	Wettability Test	Wettability tester		
9	Ultrasonic Cement Test	Ultrasonic cement tester		
10	Cement density/weight	Mud Balance		
11	Viscosity	• Rheometer		
12	Fluid loss	Stirring fluid loss tester		
		Static fluid loss tester		

4.2.4. Conference Attendance

There will be a paper presentation at Nigerian Annual International Conference and Exhibition (NAICE) taking place in Lagos, Nigeria from 1st through 3rd August 2022. Other presentations will likely be attended when the abstracts submitted return accepted. This will also be communicated in due course.

4.2.5. Mentorship and supervision of post graduate and undergraduate students: Mentoring and supervision are key part of human capacity development which is very important in baton change for the future of the oil and gas industry. This is a continuous exercise as seen in session 4.1.9 of the report (see Appendix 1 and 2 also)

4.2.6. Attendance of short courses: There is the need for the Chair to attend short courses especially in line with renewable energy. This will help to reposition the Department (in terms of teaching and curriculum development) for the on-going energy transition. This will also help the Chair give informed suggestions / advice to stake holders whenever the need arises.

4.2.7. Stake Holders Meeting

Meetings will be held with stakeholders to know their research needs and also to make possible suggestions on what would be relevant to donor.

4.2.8. Courses Taught to Undergraduates and Post graduate Students

Teaching of Postgraduate as well as undergraduate students will still continue for the new academic session.

- PNG 302.1: Rock and Fluid Properties
- ENG 402.1: Engineering Economics
- PNG 403.1: Natural Gas Engineering
- GNG 505.1: Petrochemical processes
- PNG 802.1: Advanced Natural Gas Engineering
- PNG 805.1 Advanced Evaluation of Oil and Gas Properties
- PNG 811.2 Risk Analysis in Petroleum Ventures
- PNG 812.2 Liquified Natural Gas (LNG) Processing
- DPE 780.2 Petroleum Economics and Property Evaluation
- PNG 307.2: Fundamentals of Petroleum Engineering
- GES 400.2: Entrepreneurship
- ENG 400.2: Industrial Training II
- PNG 507.2: Natural Gas Processing
- PNG 520.2: Final Year Project

4.3 Key Performance Indicators- KPIs

There are some key activities that has been used to measure the progress or performance of the Chair so far. These are highlighted in the sections following.

4.3.1 Patents

The Chair has as its vision harnessing available human capital potentials through quality research, innovation and collaboration. Some of these quality research has been able to produce innovation which need protections in the name of patents.

4.3.1.1. 1 filed

Flavonoids in Formulation of Gas Hydrate Inhibitors

Virtue Urunwo Wachikwu-Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka and Onyewuchi Akaranta

4.3.1.2. 3 being compiled

A New Approach of Controlling the Activities of Sulphate-Reducing Bacteria (SRB) in the Reservoir during Water Injection

Otega Solomon Ogherohwo, Sunday Sunday Ikiensikimama. Ohimor, E.O. and Virtue Urunwo Wachikwu-Elechi

Plant Gums in Formulation of Gas Hydrate Inhibitors

Virtue Urunwo Wachikwu-Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka and Onyewuchi Akaranta

Plant Extracts in Formulation of Gas Hydrate Inhibitors

Virtue Urunwo Wachikwu-Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka and Onyewuchi Akaranta

4.3.2. Publications

- 1. Virtue Urunwo Elechi, **Sunday Sunday Ikiensikimama**, Joseph Atubokiki Ajienka, Onyewuchi Akaranta and Okon Efiong Okon (**2021**). Laboratory Evaluation of Caricaceae Plant as a Locally Sourced Surfactant for Gas Hydrate Inhibition in a Laboratory Mini Flow Loop. Appl Petrochem Res. DOI 10.1007/s13203-021-00275-x
- Virtue Urunwo Wachikwu-Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka, Onyewuchi Emmanuel Akaranta and Okon Efiong Okon (2021). Suppression Performance Of An Unmodified Bio-Extract For Simulated Offshore Gas Hydrate Mitigation. SPE-206304-MS accepted for presentation at the Annual Technical Conference and Exhibition to be held on 21st -23rd September 2021 in Dubai, UAE.
- 3. Virtue Urunwo Wachikwu-Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka, Onyewuchi Emmanuel Akaranta and Okon Efiong Okon (2021). Zingiberales Extract (ZE): A Locally Sourced Natural Compound as Gas Hydrate Inhibitor. Paper No. SPE-207154-MS presented at Nigerian Annual International Conference and Exhibition held on 2nd-4th August, in Lagos, Nigeria
- 4. Virtue Urunwo Wachikwu-Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka, Onyewuchi Emmanuel Akaranta and Okon Efiong Okon (2021). Eco-Toxicity of 2-Di(methylamino) ethyl methacrylate (2-DMAEM) as a Commercial Kinetic Hydrate Inhibitor (KHI). Paper No. SPE-207156-MS presented at Nigerian Annual International Conference and Exhibition held on 2nd-4th August, in Lagos, Nigeria.
- 5. Daniel Ocran, **Sunday Sunday Ikiensikimama** and Eric Broni-Bediako (**2021**). Grey Wolf Optimiser as a New Algorithm for Solving Well Placement Optimization Problem. Egyptian Journal of Petroleum, EGYJP-D-21-00158 (Under Review).

- Kouadio, E. K., Abrakasa, S., Dobo, H. K. B., Oura, E. L. and Ikiensikimama, S. S. (2021). Visual Kerogene Analysis for Source Rocks Assessment: Case Study of Onshore Niger Delta Basin (Nigeria). Petroleum and Coal Journal, 63(4).
- 7. Kouadio, E. K., Abrakasa, S., **Ikiensikimama**, **S. S.** Dobo, and Botwe, T. (**2021**). (2021). Rock-Eval Pyrolysis Analysis of Agbada and Akata Shale from Niger Delta Basin, Nigeria. Asian Journal of Geological Research, 4(4), 99-111.
- 8. Joseph Atubokiki Ajienka, Sunday Sunday Ikiensikimama and Virtue Urunwo Wachikwu-Elechi (2021). An Experimental Investigation of the Order Brassicales Extract (BPE) as Chemical for Gas Hydrate Control. Engineering, ENG-D-21-01518 (Under Review)
- 9. Ajienka, J. A, **Ikiensikimama, S. S.** and Wachikwu-Elechi, V. U. (2022). Performance Evaluation of the Inhibition Efficiency of Plant Extract (PE) a Local Inhibitor as Gas Hydrate Inhibitor in a Simulated Offshore Environment. Petroleum Science and Technology, LPET-2022-0097 (Under Review).
- 10. Okon Efiong Okon, Joseph Atubokiki Ajienka, Sunday Sunday Ikiensikimama, Onyewuchi Emmanuel Akaranta and Virtue Urunwo Wachikwu-Elechi (2022). Evaluation of Agro-Waste Based Developed Gas Hydrate Inhibitor in the presence of 2-Di(methylamino) ethyl methacrylate and N-Vinyl Caprolactam". Journal of Petroleum Science and Engineering, PETROL 28738 (Under Review)
- 11. Virtue Urunwo Wachikwu-Elechi, **Sunday Sunday Ikiensikimama**, Joseph Atubokiki Ajienka, Onyewuchi Emmanuel Akaranta and Okon Efiong Okon (**2022**). Suppression Performance Of An Unmodified Bio- Extract For Simulated Offshore Gas Hydrate Mitigation. AbuDhabi International Petroleum Conference and Exhibition.22ADIP-P-34-SPE (Under Review)

4.3.3. Mentorship

In line with some of the aspirations of the Chair, some students have successful completed their studies that is those that have graduated (Table 8), about to graduate (Table 9).

Undergraduate Students (Graduated)

Table 8: List of Sor	ne Graduates Ment	ored and Titles of Sup	pervised Research Projects
		1	

S/No	Names/Matric no.	Project Topic	Relevance to Oil and Gas or	Expected Time
			Significance of the Study	Frame to
				Completion
1	SULE, Victor	A Comparative	To help identify the best annular	Graduated
	Joshua	Analysis between	friction pressure loss models	
	U2015/3065029	Annular Friction		
		Model		
2	CHUKWUOGO,	Polymer Flooding for	To find more effective and	Graduated
	Nkemakonam S.	Enhanced Oil	economical alternatives to	
	U2015/3065066	Recovery	currently used conventional	
			polymers so as to improve sweep	
			efficiency and lead to improved	
			oil recovery.	

3	DILINYE,	Economic Analysis of	Selecting the best artificial lift	Graduated
	Chinonso Patrick	Artificial Lift System	method that would be viable for a	
	U2015/3065037	using Gas Lift and	well.	
		Electric Submersible		
		Pump		
4	AGBALA,	Geo-mechanical	Predict the critical parameters of	Graduated
	Ogheneoke Jenkis	Method for Sand	sand production and controlling	
	U2015/3065064	Production	sand production using production	
		Management using	data from geo-mechanical	
		Kirsh Model in Oil and	method	
		Gas Well		
5	ESOSUAKPO,	Comparative Analysis	Selecting artificial lift system that	Graduated
	Okioghene Mario	of different Artificial	will optimize productivity in	
	U2015/3065053	Lift Methods using	Niger Delta.	
		Simply Arithmetic		
		Weighing (SAW)		
		Model		
6	CHISOM, Emeto	The Economics of	To provides a means of	Graduated
	U2015/3065023	Floating Gas to Liquid	optimizing gas production in	
		Technology	Nigeria and reduce flaring	
			activities.	
7	IGBOSI, Tombra	Economic Analysis of	To determine the optimal gas	Graduated
	Timipre	Gas to Power in	price to ensure profitability in a	
	U2015/3065011	Nigeria	gas to power investment.	
8	CHARLES-	Impact of Transition to	To help identify the relationship	Graduated
	OKHIDE , Michael	renewable energy on	between dynamics of the	
	Tari	Nigeria's Economic	development of the renewable	
	U2015/3065061	Growth	energy industry and production	
			and consumption of fossil fuel	
9	MARCUS, Ruth	Assessment of Gravel	To determine the average	Graduated
	Leyirah	Packing Methods used	formation sand size used to find	
	U2015/3065058	in the Petroleum	accurate gravel pack size suitable	
		Industry.	for completion.	

Table 9: List of Masters and Ph.D. Students about to Graduate (Graduating)

S/No	Name /matric no	Project topic	Relevance to oil and	Expected	time
			Gas	Frame	to
				completion	n

1	Babawale Emmanuel	Forecasting of Petroleum	The inability of the	Graduating
	Ojedapo	Production using Data	current machine	-
	G2018/M.ENG/PNG/FT/042	Driven method (Machine	learning algorithms	
		Learning)	to handle seasonal	
		_	effects associated	
			with oil and gas	
			production data, shift	
			in production regime	
			as well as using oil	
			production and time	
			data, which is not	
			extensive for	
			prediction.	
			This study is an	
			improvement on the	
			existing time series	
			machine learning	
			algorithm by	
			handling the seasonal	
			effects and variety of	
			regimes associated	
			with petroleum	
			production data using	
			multivariate data for	
			time series prediction	
2.	Noble Ukela Odoi	Development of Efficient	Evaluating the	Graduating
	G2018/PHD/ACE-	Infrastructure and	infrastructural gap in	
	CEFOR/FT/037	Interconnecting Network for	the utilization of	
		Gas Pipelines	natural gas in the gas	
			value chain for the	
			monetization of LPG	
3.	Ogherohwo Solomom Otega	A New Approach of	This research will	Graduating
	G2017/MENG/PNG/FT/038	Controlling The Activities of	help in the reduction	
		Sulphate -Reducing Bacteria	of cost of pipeline	
		(SRB) in the Reservoir	maintenance as a	
		During Water Injection.	result of microbial	
			induced corrosion	
			(MIC) which is a	
			negative impact of	
			SRB. This approach	
			is more eco-friendly	
			and will therefore	

			mitigate health risk to personnel caused by hydrogen sulfide (H2S). It is cheaper than other methods of SRB control and will prevent environmental pollution caused by other methods of controlling SRB.	
4.	Koffi Eugene KOUADIO	Integrated Approach for Source Rocks Characterization of Niger Delta Basin, Nigeria	The work will provide a better analytical procedure for the definition and evaluation of source rock characteristics for the Niger Delta formation	Graduating
5.	Eneota, Chidike Paschal G2018/PHD/ACE- CEFOR/FT/038	Gas Conversion and Utilization Strategies for Economic and Environmental Benefits	The project will provide the framework and model for oil and gas including stakeholders that will estimate the gas conversion and utilization in Niger Delta thereby eliminating gas flaring. This will also result in monetization of stranded gas which yields more profit to the oil gas operators and stakeholders.,	Graduating

6.	Vivian Ihejirika	Economic Impact of Policies	The study will bring	Graduating
	G2018/PhD/ACE-	and Infrastructures on Gas	about effective	
	CEFOR/FT/058	Utilization Systems in	management of gas	
		Nigeria.	utilization and also	
			boost gas production	
			to increase revenue	
			accruing to	
			government and	
			stakeholders. It will	
			provide a framework	
			for gas-based	
			industrialization	
			leading to cleaner	
			energy and	
			sustainable power	
			supply.	

Appendix 1: List of Some Masters and Ph. D Students under Mentorship/Titles of Supervised Research Projects (On-Going)

S/No	Name /matric no	Project topic	Relevance to oil and	Expected time
			Gas	Frame to
				completion
3	Obashanu Bernard	Application of	Taking into account	1 year
	G2018/MENG/PNG/FT/021	Geomechanical Properties to	the dynamic system of	
		Reservoir Evaluation	the reservoir, as	
			opposed to the	
			conventional static	
			criteria presently	
			used, this study	
			provides the oil and	
			gas with critical	
			insight of	
			geomechanically	
			effects prediction (rate	
			of sand production,	
			well stability, stresses	
			in and around the	
			wellbore as well as	
			avoid NPT which	
			impacts production	
			etc) in the bid to	

			mitigate /eliminate	
			associated cost with	
			their handling	
4	Iriakuma, Erempagamo	Reduction of Transmission		1 year
	G2018/PHD/ACE-	and Distribution Losses		
	CEFOR/F1/025	through Efficient Leak		
		Detection and Monitoring		
		(Case Study: Obite-Bonny		
		Gas Pipeline Network)		
5	Okon, Christopher Etim	Evaluation of Surfactant to	This work will	6 months
	G2017/MENG/PNG/F1/004	Improve Sweep Efficiency of	identify a local	
		an Oilfield in Niger Delta	surfactant that can be	
			used for chemical	
			enhanced oil recovery	
6.	Usiayo, Afoke Victor	Production of Biofuels from	This project will	3 years
	APPL/2020PHD/PNG/007	Lignocellulosic Biomass	modify the existing	
		Resources	acid pretreatment	
			method by modelling	
			and optimizing the	
			process variables	
			(reactor temperature,	
			acid catalyst	
			concentration and	
			residence) of the	
			feedstock, in order to	
			prevent formation of	
			inhibitors which will	
			result to enhanced	
			yield and quality of	
			biobutanol (bio	
			gasoline) production	
			that can be used	
			directly in a gasoline	
			engine.	
9	Ezeh, Okechukwu Chigozirim	Applicability of Polymer	This study will	1 year
	G2018/PHD/ACE-	Flooding for in-situ	provide guidelines to	
	CEFOR/FT/020	Development of Nigeria's	developing heavy	
		Heavy Oil Reservoirs	crude oil for in	
			country application.	
			proper screening	
			criteria for heavy	
		1		

			will qualify for	
			polymer flooding.	
10	Joseph Adeoluwa Adetuberu	Application of Artificial	It will help improve	1 year
	G2018/PhD/ACE-	Intelligence in the Economic	decision making for	
	CEFOR/PT/031	Analysis of Petroleum	economic analysis	
		Ventures	before Field	
			Investment Decision	
			(FID) for both	
			investors and	
			stakeholders with a	
			more realistic forecast	
			based on the actual	
			occurrences over time	
			from other fields	
			within the area. It will	
			help companies	
			understand the major	
			drivers for	
			investment, the	
			strength and direction	
			of the cost variables	
			for field development	
11.	Onu, Chukwuemeka	Evaluation of Development	This study will	3 years
		and Economic Options for	provide economically	
		Stranded Gas	promising	
			approaches, make	
			clearer the impact of	
			price optimization on	
			a thriving natural gas	
			market and propose a	
			more dynamic fiscal	
			policies for the	
			domestic gas market	
			in Nigeria	
12.	Daniel Ocran	Metaheuristic Intelligent	This work will	1.5 years
	PGP-8000082218	Systems for Ranking	provide an intelligent	
		International Fiscal Regimes	system for ranking	
			international fiscal	
			regimes using a new	
			well placement	
			optimizer. It will	
			integrate reservoir	

			11	
			model into economic	
			model for estimating	
			maximum economic	
			returns on investments	
			and quantifying	
			uncertainties and	
			risks.	
13.	Djoi, Nokpo Andre	A Stochastic Approach to	The work when	2 years
	G2020/PHD/ACE-	Cost Estimation and	completed will	
	CEFOR/FT/012	Economic Evaluation of Oil	Facilitate long term	
		Well in the Niger Delta	and more accurate	
			evaluation of crude oil	
			prices and will give a	
			guide for the drilling	
			team on how to handle	
			events that will lead to	
			NPT (Non-Productive	
			Time).The handling	
			of which will lead to	
			more accurate	
			well/drilling timings	
			and cost estimations	
15	Kamayou Monkam Elise	Seismic Based Artificial	This work will help to	1 year
	Vianney	Intelligence and Simulation	reduce uncertainty as	
	G2018/PHD/ACE-	for improved Reservoir	well as risks in	
	CEFOR/FT/043	Description in a Niger Delta	petroleum exploration	
		Field	and production for	
			timely and more	
			accurate reservoir	
			management and	
			decision making.	
16	Obuekwe Chukwukadibia	Techno-Economic Analysis	This project will	8 months
	Mogbo	of Floating Gas to Power	identify and rank	
	G2018/PHD/ACE-	(FGTP) for Stranded Gas -	Nigeria stranded	
	CEFOR/PT/004	Offshore Nigeria	offshore gas fields	
			with respect to	
			floating gas to power	
			projects development	
			It will also an	
			economic model that	
			will demonstrate the	
			will demonstrate the	
			conditions under	

			which FGTP will be	
			economically viable	
17	Anyanwu Chukwuemeka	Development of a Fingerprint	This work will	2 years
	G2019/Ph.D/PNG/009	Model to Classify Niger Delta	develop model for the	
		Reservoirs Using OPEC's	proper classification	
		Auditing Criteria	of reservoirs in the	
			Niger Delta, using	
			OPEC criteria as	
			stated in OPEC	
			LXXXIV.286	
			Resolution. It will also	
			produce source	
			signature for the	
			identification and	
			characterization of	
			reservoirs.	
19	Obiajulu Chukuezugo Ekeh	Permeability Modelling	This work will	1 year
	G2019/Ph. D/PNG/PT/002	Using Core and Well Log	provide a method of	
		Data in the 'XX Field' of	deriving rock	
		Coastal Swamp Depo-bed in	permeability by	
		the Niger Delta Basin.	correlating multiple	
			well logs with core	
			permeabilities using	
			non-parametric	
			regression in	
			conjunction with	
			multiple variant	
			statistical analysis	

Students just Assigned for Supervision

Appendix 2: List of Some Masters and Ph. D Students under Mentorship/Titles of Supervised Research Projects

S/No	Name /matric no	Project topic	Relevance to oil and Gas	ExpectedtimeFrametocompletion
1	Chukwu Ikemefuna Ekene G2021/Ph.D/ACE- CEFOR/FT/006			

2	Mutadza Itai	Effect of Reactive Flow in		
	G2021/Ph.D/ACE-	Porous Media for Carbon		
	CEFOR/FT/015	Capture and Storage in		
		Depleted Reservoirs		
3	Humphrey Harry	Suitability and Applicability		
	G2021/Ph.D/ACE-	of Microwave Spectroscopic		
	CEFOR/FT/011	Oil Poservoir Pock and Eluid		
		Properties		
		Toportios		
1	Fawziyah Olufunke Olarinove			
-				
5	Okon Efiong Okon			
6	Olympic Adapti Samuel			
0	UluwaToshi Adeou Sandel-			
	Idara			
7	ELOBE-MBAM	Importance of Depositional		
	THEOPHILUS	Environment to History		
	G2019/MENG/PNG/FT/023	Matching-Niger Delta Case		
		Study		
	A 1 1			
8	Ogazi Kenechukwu Henry			
	G2019/MEM/ENG/PT/019	The Importance and		
		Applications of Conductor		
		Piling Using Hammers in		
		Nigeria		

9	Chukwudi Onwuaso		
	G2018/MENG/PNG/FT/034		
10	Kenneth Okwor	Economic Model for Crude	
	G2018/MENG/PNG/FT/031	Oil Price Dynamic Forecast	
		Using Machine Learning	

Appendix 3: List of Some Under graduate Students under Mentorship/Titles of Supervised Research Projects

S/No	Names/Matric no.	Project Topic	Relevance to Oil and Gas or	Expected	Time
			Significance of the Study	Frame Completion	to
1	Nwogu Chinwendu Uzoma U2016/3065014				
2	George-Gogo Tari U2016/3065012				
3	Ikeokwu Chinaza Collins U2016/3065005				
4	Ibutonmiema Tamuno Roselin U2016/3065013				
5	Ndidi Precious Onyekachi U2016/3065011				